Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37872843

RESUMO

Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging. Here, using the naturally short-lived turquoise killifish (N. furzeri), we describe a high-throughput platform that combines loss- and gain-of-function of peptide hormones. Mutation of three primary pituitary hormones, growth hormone (gh1), follicle stimulating hormone (fshb), and thyroid stimulating hormone (tshb), alters somatic growth and reproduction. Thus, suggesting that while the killifish undergoes extremely rapid growth and maturity, it still relies on vertebrate-conserved genetic networks. As the next stage, we developed a gain-of-function vector system in which a hormone is tagged using a self-cleavable fluorescent reporter, and ectopically expressed in-vivo through intramuscular electroporation. Following a single electroporation, phenotypes, such as reproduction, are stably rescued for several months. Notably, we demonstrate the versatility of this approach by using multiplexing, dose-dependent, and doxycycline-inducible systems to achieve tunable and reversible expression. In summary, this method is relatively high-throughput, and facilitates large-scale interrogation of life-history strategies in fish. Ultimately, this approach could be adapted for modifying aquaculture species and exploring pro-longevity interventions.


In humans and other vertebrates, a pea-size gland at the base of the brain called the pituitary gland, produces many hormones that regulate how individuals grow, reproduce, and age. Three of the most prominent hormones are known as the growth hormone, the follicle-stimulating hormone, and the thyroid-stimulating hormone. It is important that the body precisely controls the levels of these hormones throughout an individual's life. One way researchers can investigate how hormones and other molecules work is to artificially alter the levels of the molecules in living animals. However, this has proved to be technically challenging and time-consuming for pituitary gland hormones. Moses et al. studied the growth hormone, follicle-stimulating hormone, and thyroid-stimulating hormone in the turquoise killifish, a small fish that grows and matures more rapidly than any other vertebrate research model. The experiments revealed that mutant fish lacking one of the three primary pituitary hormones were smaller, took longer to reach maturity, or were completely sterile. This suggests these three hormones play a similar role in killifish as they do in other vertebrates. The team then developed a new experimental platform to precisely control the levels of the three hormones in killifish. Genes encoding individual hormones were expressed in the muscles of the mutant fish, effectively making the muscles a 'factory' for producing that hormone. Treating mutant fish this way once was enough to restore growth and to fully return reproduction to normal levels for several months. Moses et al. also demonstrated that it is possible to use this platform to express more than one hormone gene at a time and to use drugs to switch hormone production on and off in a reversible manner. For example, this reversible approach made it possible to effectively adjust fertility levels. The new platform developed in this work could be adapted for modifying a variety of traits in animals to explore how they impact health and longevity. In the future, it may also have other applications, such as optimizing how farmed fish grow and reproduce and regulating hormone levels in human patients with hormone imbalances.


Assuntos
Fundulidae , Hormônios Peptídicos , Animais , Hormônio do Crescimento/metabolismo , Hormônios Hipofisários , Longevidade
2.
Cold Spring Harb Protoc ; 2023(2): 90-99, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223984

RESUMO

The African turquoise killifish Nothobranchius furzeri has recently gained interest as an emerging vertebrate model system for the study of aging, owing to its naturally short life span and generation time. Here, we provide a step-by-step guide for effective genome engineering using the CRISPR-Cas9 system to generate loss-of-function (i.e., knockout) alleles and for precise editing (i.e., knock-in) of short sequences into the genome. Using this approach, a new stable line can be created within several months. The killifish's tough chorion, rapid growth, and short life span are considered in this protocol and account for the key deviations from similar protocols in other fish models.


Assuntos
Sistemas CRISPR-Cas , Ciprinodontiformes , Animais , Técnicas de Inativação de Genes , Edição de Genes , Longevidade/genética , Envelhecimento/genética , Ciprinodontiformes/genética
3.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187630

RESUMO

Classical evolutionary theories propose tradeoffs between reproduction, damage repair, and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. Here, we use the turquoise killifish ( N. furzeri ) to genetically arrest germline differentiation at discrete stages, and examine how different 'flavors' of infertility impact life-history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. Next, investigating our genetic models revealed that only germline depletion enhanced female damage repair, while arresting germline differentiation did not. Conversely, germline-depleted males were significantly long-lived, indicating that the mere presence of the germline can negatively affect lifespan. Transcriptomic analysis highlighted enrichment of pro-longevity pathways and genes, with functional conservation in germline-depleted C. elegans . Finally, germline depletion extended male healthspan through rejuvenated metabolic functions. Our results suggest that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative mechanisms to classical evolutionary tradeoffs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...